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1 Introduction

Several major problems, namely, uncertain surface forcing function, unknown
open boundary conditions (OBC), and pressure gradient error using the a-
coordinate, affect the accuracy of coastal ocean prediction. At open lateral
boundaries where the numerical grid ends, the fluid motion should be unre-
stricted. Ideal open boundaries are transparent to motions. The most popu-
lar and successful scheme is the adjoint method. The disadvantages that may
restrict its use are ocean-model dependency and difficulty in deriving the ad-
joint equation when the model contains rapid (discontinuous) processes, such
as change of ocean mixed layer from entrainment to shallowing regime. De-
velopment of a ocean-model independent algorithm for determining the OBC
becomes urgent.

Reduction of horizontal pressure gradient error is another key issue of using
a-coordinate ocean models, especially of using coastal models. The error is
caused by the splitting of the horizontal pressure gradient term into two parts
and the subsequent incomplete cancellation of the truncation errors of those
parts. As advances of the computer technology, use of highly accurate schemes
for ocean models becomes feasible.

2 Uncertainty of Surface Forcing

To investigate the uncertainty of surface wind forcing and its effect on the coastal
prediction, the Princeton Ocean Model (POM, Blumberg and Mellor, 1987)
was used with 20 km horizontal resolution and 23 sigma levels conforming to a
realistic bottom topography during the life time of tropical cyclone Ernie 1996
over the South China Sea (SCS). A study (Chu, et al, 1999) shows that the
root-mean-square (RMS) difference of each component (zonal or latitudinal)
between the two wind data (NCEP and NSCAT) over the whole SCS during
November 1996 fluctuated between 2.7 m/s to 6.5 m/s. The uncertainty of the
whole SCS response to the two wind data sets were 4.4 cm for surface elevation,
0.16 m/s for surface current velocity, and 0.5°C for near-surface temperature,
respectively.
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3 Jacobian Matrix Method for Determining OBCs

Improvement of coastal prediction largely depends on determination of lateral
OBCs, vector, B = (b1, b2, ..., bn). The observation forms an m-dimensional
vector (observation vector) 0 =(01,02, ...Om), located at the interior. If B
is given, we can solve the dynamic system and obtain the solution S. At the
observational points, the solutions form a solution vector S = (SI,S2,...Sm),
which depends on B (Fig. 1).

It is reasonable to determine B with the given 0 by minimize the RMS error

,ff~;~m 1= - L(Sj - OJ)2. (1)
m.3=1

which leads to a set of n equations implicitly solvable for b1,b2, ...bn,

m
L(Sj-Oj)Rij=O, i=I,2,...,n (2)
j=1

where

R - asj . - 1 2 .. - 1 2 (3)ij=~, 't-"...,n,J-"...m.

are components of a n x m Jacobian matrix R = {~j}.
From a first guess boundary vector B*, a solution vector S* is obtained by

solving the numerical ocean model. The RMS between S* and 0 might not be
minimal. We update the boundary parameter vector components by increments
{c5bi I i = 1,2, ..., n} , and therefore components of the solution vector become

n
Sj = Sj + L Rijc5bi + high order terms (4)

i=1

Substituting (4) into (2) and neglecting higher order terms leads to a set of n
linear algebraic equations for {c5bi} ,

nL Pilc5bl = di, i = 1,2, ..., n (5)
1=1

where

m m
Pil == LRljRij, di == LRi;(Oj - Sj); i = 1,2, ...,n; 1 = 1,2,...n.

;=1 j=1
(6)

Both OJ and S1 are known quantities. Therefore, the linear algebraic equations
(5) have definite solutions when the Jacobian matrix {~j} is determined and

det {Pill # 0 (7)
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This method was verified by a flat bay centered at 35°N and bounded by
three rigid boundaries (Fig. 1). This bay expands 1000 km in both the north-
south and east-west directions. The northern, southern, and western boundaries

I are rigid, and the eastern boundary is open. Using the optimization method,
the temporally varying aBC, B(t), is determined. After 10 day's of integration,
the magnitude of relative error

E(O) = L:: 10j - Sjl
(8)j - L:: 10ji

is on the order of 10-4-10-5 (Fig. 2), which is almost in the noise level. The
Jacobian matrix method performs well even when random noises are added to

) the 'observational' points. This indicates that we can use real-time data to
invert for the unknown open boundary values.

4 High-Order Difference Schemes
I

4.1 A Hidden Problem

Improvement of the prediction also partially depends on the selection of the dis-
cretization schemes. Most coastal models use second-order difference schemes

I (such as second-order staggered C-grid scheme) to approximate first-order deriv~-
tive

(~ ) ~ Pi+I/2 - Pi-I/2 - .!.- (~) Ll2, (9)ax . Ll 24 ax .. .I
where P, Ll represent pressure and grid spacing. This scheme uses the local
Lagrangian Polynomials whose derivatives are discontinuous.

, 4.2 Combined Compact Scheme

Recently, Chu and Fan (1997, 1998, 1999, 2000) proposed a new three-point
combined compact difference (CCD) scheme,

(81) ((81) (81) ) (( 82 I ) (82 I ) )- + QI - + - +.8lh - - - +
8x i 8x i+1 8x i-I 8X2 i+1 8X2 i-I ...

UI= 2h (fi+1 - Ii-I)

(82 I ) ((82 I ) (82 I ) ) 1 ((81) (81) )- + Q2 - + ~ +.82- - - - + ...
8X2 i 8X2 i+1 8x i-I 2h 8x i+1 8x i-I

1.1 (10)
It U2
it = ""hi (fi+1 - 2/i + Ii-I)

I
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to compute fl , fl', ...fi(k) by means of the values and derivatives at the two
neighboring points. Moving from the one boundary to the other, CCD forms a
global algorithm to compute various derivatives at all grid points, and guaran-
tees continuity of all derivatives at each grid point.

4.3 Seamount Test Case

4.3.1 Model Description

Suppose a seamount (Fig. 3) located inside a periodic f-plane ( fo = 10-4S-1)
channel with two solid, free-slip boundaries along constant y. Unforced flow
over seamount in the presence of resting, level isopycnals is an idea test case
for the assessment of pressure gradient errors in simulating stratified flow over
topography. The flow is assumed to be reentrant (periodic) in the along channel
coordinate (i.e., x-axis). We use this seamount case of the Semi-spectral Prim-
itive Equation Model (SPEM) version 3.9 (Haidvogel et al., 1991) to test the
new difference scheme.

4.4 Temporal Variations of Peak Error Velocity

Owing to a very large number of calculations performed, we discuss the results
exclusively in terms of the maximum absolute value the spurious velocity (called
peak error velocity) generated by the pressure gradient errors. Fig. 4 shows the
time evolution of the peak error velocity for the first 20 days of integration
with the second-, fourth-, and sixth-order ordinary schemes. The peak error
velocity fluctuates rapidly during the first few days integration. After the 5
days of integration, the peak error velocity show the decaying inertial oscillation
superimposed into asymptotic values. The asymptotic value is around 0.19 cm/s
for the ordinary scheme and 0.15 cm/s for the compact scheme. For the sixth
order difference the asymptotic value is near 0.04 cm/s for the ordinary scheme
and 0.02 cm/s for the compact scheme.

5 Conclusions

(1) The surface forcing function contains uncertainty. The difference between
coQ!monly used NSCAT and NCEP surface wind data is not negligible. The
response of the South China Sea to the uncertain surface forcing is also evident.
Therefore, it is quite urgent to study the model sensitivity to surface boundary
conditions.

(2) The Jacobian matrix method provides a useful scheme to obtain unknown
open boundary values from known interior values. The optimization method
performs well even when random noises are added to the 'observational' points.
This indicates that we can use real-time data to invert for the unknown open
boundary values. J(3) The a-coordinate, pressure gradient error depends on the choice of differ- "

ence schemes. Fourier analysis shows that the fourth-order scheme may reduce I
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the truncation errors by 1-2 order of magnitude compared to the second-order
scheme, and the sixth-order scheme may reduce the truncation errors further
by 1-2 order of magnitude compared to the fourth-order scheme. Within the

! same order of the difference the combined compact scheme leads to a minimum
truncation error. The compact scheme may reduce near 55% error, and the
combined compact scheme may reduce near 84% error compared to ordinary
sixth-order difference scheme.
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